Mini Project for Digital Forensic Workshop

Problem Statement: Capture network packets in a PCAP file using Scapy in a Python environment.
Develop Python code to identify anomalies in the given packets inside the PCAP file based on the
following rules:

Rule 1: Common destination ports for TCP and UDP.
Rule 2: Excessive Traffic (DDoS).

Rule 3: Number of packets and packet size.

Rule 4: Unsolicited ARP replies.

Rule 5: Unusually large DNS responses.

Rule 6: Excessive ICMP Echo requests.

Rule 7: Excessive TCP SYN.

Rule 8: IPs scans excessive ports.

The code ultimately creates a report.csv file that will contain the following columns:

IP MAC Rule | Rule | Rule | Rule | Rule [Rule6| Rule7 | Rule 8 MDP(
Addre | Addres 1 2 3 4 5 %)

ss s

ip; mac, o/1 [0o/1] 0/1 | 0/1 | O/1 0/1 0/1 0/1

ip2 mac, o/1 | 0/1 | 0/1 o/1 | o1 0/1 0/1 0/1

iPn mac, o/1 [0o/1] 0/1 | 0/1 | O/1 0/1 0/1 0/1

If a device violates any rule, the corresponding cell value will be 1; otherwise, it will be 0. The
last column calculates the Malicious Device Probability (MDP) as a percentage, which can be

defined as:

MDP(%)=(Rule1+Rule2+Rule3+Rule4+Rule5+Rule6+Rule7+Rule8)X100/8

Example:

from scapy.all import rdpcap, DNS, ARP
from collections import Counter
from collections import defaultdict

import time

IP, ICMP, TCP,

Load the PCAP file

packets = rdpcap('example.pcap')

Inspect packets
for packet in packets:
print (packet.summary ())

non standard ports = set()
FHAFHAFH AR A A H AR A AR H AR H AR H AR AR AR H AR AR A
Rule 1: Detecting Traffic on Non-Standard Ports
G i i
for packet in packets:
if packet.haslayer ('TCP'):

tcp layer = packet['TCP']

if tcp layer.dport not in [80, 443, 22]: # Add standard
destination ports

non standard ports.add(tcp layer.dport)

print ("Non-standard ports detected:", non standard ports)
FHHHHH AR A AR A
Rule 2: High Traffic Volume (DDoS Detection)

G

ip count = Counter ()

#Advantages of Using Counter:Easy Initialization: No need to
predefine keys or set values #manually, Automatic Counting: When
an element is not in the Counter, it is initialized with a
#count of 0,

#Built-in Operations: most common (n): Returns the n most common
elements.Supports #arithmetic operations #between Counters.

for packet in packets:
if packet.haslayer ('IP'"):

ip layer = packet['IP']

ip count[ip layer.src] += 1
FHHHHH AR A A A A A A
Rule 3: Detect IPs exceeding a threshold
C R i i
threshold = 100 # Set your threshold
MAX MTU=1500#MTU (Maximum Transmission Unit) is the largest size of a data
packet that can be transmitted over a network or communication protocol
without needing to be fragmented.
ddos candidates = [ip for ip, count in ip count.items() if count >
threshold]
print ("Potential DDoS IPs:", ddos candidates)

#Packet Size Analysis

for packet in packets:
size = len (packet)
if size > MAX MTU: # MTU size exceeds standard Ethernet
print (f"Large packet detected: {size} bytes")

FHAHH A R S R
#Rule 7: Detect TCP SYN Flood (High number of SYN packets)
FHAH A R A S R
SYN FLOOD THRESHOLD = 100 # Number of SYN packets in a short period
syn _count = defaultdict (int)
for packet in packets:
if packet.haslayer (TCP) and packet['TCP'].flags == 0x02: # SYN flag
set
src_ip = packet[IP].src
syn _count[src ip] +=1

for ip, count in syn count.items():
if count > SYN FLOOD THRESHOLD:
print (f"Potential TCP SYN Flood from {ip}, {count} SYN packets")
FHAS A S
FHAS A S
Rule 8:Port Scanning Detection
FHAH A A S
PORT SCAN THRESHOLD = 5 # Connection attempts on multiple ports from the
same IP
connection attempts = defaultdict (set) # Source IP -> Set of destination
ports
for packet in packets:
if packet.haslayer (TCP) :
tcp layer = packet['TCP']
if packet.haslayer (IP):
connection attempts[packet[IP].src].add(tcp layer.dport)

for ip, ports in connection attempts.items():
if len(ports) > PORT_ SCAN THRESHOLD:
print (f"Potential Port Scan detected from {ip} targeting
{len(ports)} ports")

