
Write a Unix C program that:

1. Creates a child process using fork().

2. The parent process must execute the wc -l <filename> command using execlp().

3. The child process must create a POSIX thread to count the total number of vowels
in the same file.

4. File I/O must use open() and read() system calls (no fopen() / fread() / getc()).

Please use man command to add the required libraries.

5. Use pthread_join() and wait() to synchronize.

6. You can not use Visual studio.

7. The code and the output from child and parents process should be pasted in the
website.

Input File Generating Process:

Ubuntu installations already have OpenSSL preinstalled because many system components
depend on it. OpenSSL is basically the Swiss army knife of cryptography in the software
world.
It’s an open-source toolkit that implements the SSL (Secure Sockets Layer) and TLS
(Transport Layer Security) protocols, plus a big library of cryptographic functions.

Here the input file generation process follows below steps:

Goal :

• Generate RSA public and private keys.

• Use your private key to sign a file (create a digital signature).

• View the signature in a Base64-encoded format.

Step 1: Create a Text File with Your Registration Number

• Open a terminal and type:

echo "YourRegistrationNumber-YourName" > file.txt

Replace YourRegistrationNumber with your actual registration number and YourName with
your actual name. Do not include spaces or tabs. This will be the message we will sign.

Step 2: Generate RSA Private Key (2048 bits)

• Run:

openssl genpkey -algorithm RSA -out private_key.pem -pkeyopt rsa_keygen_bits:2048

RSA is a public-key cryptography algorithm. Private key is a secret key that only you
should have.
It will be used to create digital signatures. 2048 bits means the key length — larger key
sizes are more secure but slower.

Step 3: Extract the Public Key

• Run:

openssl rsa -in private_key.pem -pubout -out public_key.pem

The public key is derived from the private key. Anyone with your public key can verify
your signatures, but cannot create a valid signature. This is the core of public-key
cryptography.

Step 4: Create a Digital Signature

• Run:

openssl dgst -sha256 -sign private_key.pem -out file.sig file.txt

dgst -sha256 → Computes the SHA-256 hash of file.txt. -sign private_key.pem → Uses your
private key to encrypt the hash, producing the digital signature. file.sig → The output
binary signature file. This ensures that:

1. The file came from you (authenticity).

2. The file hasn’t been changed (integrity).

Step 5: View Signature in Base64

Run:

base64 file.sig > file.sig.b64

Digital signatures are binary files. It is hard to send or view in plain text. Base64 encoding
turns binary data into readable ASCII characters so you can easily email or display it. The
file file.sig.b64 contains your signature in text form.

	Step 1: Create a Text File with Your Registration Number
	Step 2: Generate RSA Private Key (2048 bits)
	Step 3: Extract the Public Key
	Step 4: Create a Digital Signature

